Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Curr Opin Struct Biol ; 82: 102672, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37542909

RESUMO

Eukaryotic NAD-dependent isocitrate dehydrogenases (NAD-IDHs) are mitochondria-localized enzymes which catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate using NAD as a cofactor. In mammals, NAD-IDHs (or IDH3) consist of three types of subunits (α, ß, and γ), and exist as (α2ßγ)2 heterooctamer. Mammalian NAD-IDHs are regulated allosterically and/or competitively by a diversity of metabolites including citrate, ADP, ATP, NADH, and NADPH, which are associated with cellular metabolite flux, energy demands, and redox status. Proper assembly of the component subunits is essential for the catalysis and regulation of the enzymes. Recently, crystal structures of human IDH3 have been solved in apo form and in complex with various ligands, revealing the molecular mechanisms for the assembly, catalysis, and regulation of the enzyme.


Assuntos
Isocitrato Desidrogenase , NAD , Animais , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , NAD/metabolismo , Isocitratos/metabolismo , Mamíferos/metabolismo , Catálise , Cinética
2.
Biochemistry ; 62(6): 1145-1159, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36854124

RESUMO

Human isocitrate dehydrogenase 1 (IDH1) is a highly conserved metabolic enzyme that catalyzes the interconversion of isocitrate and α-ketoglutarate. Kinetic and structural studies with IDH1 have revealed evidence of striking conformational changes that occur upon binding of its substrates, isocitrate and NADP+, and its catalytic metal cation. Here, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to build a comprehensive map of the dynamic conformational changes experienced by IDH1 upon ligand binding. IDH1 proved well-suited for HDX-MS analysis, allowing us to capture profound changes in solvent accessibility at substrate binding sites and at a known regulatory region, as well as at more distant local subdomains that appear to support closure of this protein into its active conformation. HDX-MS analysis suggested that IDH1 is primarily purified with NADP(H) bound in the absence of its metal cation. Subsequent metal cation binding, even in the absence of isocitrate, was critical for driving large conformational changes. WT IDH1 folded into its fully closed conformation only when the full complement of substrates and metal was present. Finally, we show evidence supporting a previously hypothesized partially open conformation that forms prior to the catalytically active state, and we propose this conformation is driven by isocitrate binding in the absence of metal.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , Isocitrato Desidrogenase , Humanos , Isocitrato Desidrogenase/química , Deutério , Isocitratos/metabolismo , Medição da Troca de Deutério , NADP/metabolismo , Ligantes
3.
J Biol Chem ; 299(2): 102873, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621625

RESUMO

Variants of isocitrate dehydrogenase (IDH) 1 and 2 (IDH1/2) alter metabolism in cancer cells by catalyzing the NADPH-dependent reduction of 2-oxoglutarate (2OG) to (2R)-hydroxyglutarate. However, it is unclear how derivatives of 2OG can affect cancer cell metabolism. Here, we used synthetic C3- and C4-alkylated 2OG derivatives to investigate the substrate selectivities of the most common cancer-associated IDH1 variant (R132H IDH1), of two cancer-associated IDH2 variants (R172K IDH2, R140Q IDH2), and of WT IDH1/2. Absorbance-based, NMR, and electrochemical assays were employed to monitor WT IDH1/2 and IDH1/2 variant-catalyzed 2OG derivative turnover in the presence and absence of 2OG. Our results reveal that 2OG derivatives can serve as substrates of the investigated IDH1/2 variants, but not of WT IDH1/2, and have the potential to act as 2OG-competitive inhibitors. Kinetic parameters reveal that some 2OG derivatives, including the natural product 3-methyl-2OG, are equally or even more efficient IDH1/2 variant substrates than 2OG. Furthermore, NMR and mass spectrometry studies confirmed IDH1/2 variant-catalyzed production of alcohols in the cases of the 3-methyl-, 3-butyl-, and 3-benzyl-substituted 2OG derivatives; a crystal structure of 3-butyl-2OG with an IDH1 variant (R132C/S280F IDH1) reveals active site binding. The combined results highlight the potential for (i) IDH1/2 variant-catalyzed reduction of 2-oxoacids other than 2OG in cells, (ii) modulation of IDH1/2 variant activity by 2-oxoacid natural products, including some present in common foods, (iii) inhibition of IDH1/2 variants via active site binding rather than the established allosteric mode of inhibition, and (iv) possible use of IDH1/2 variants as biocatalysts.


Assuntos
Isocitrato Desidrogenase , Ácidos Cetoglutáricos , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Neoplasias/metabolismo , Especificidade por Substrato , Ligação Proteica/efeitos dos fármacos , Cristalografia
4.
J Biol Chem ; 298(12): 102695, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375638

RESUMO

Human NAD-dependent isocitrate dehydrogenase or IDH3 (HsIDH3) catalyzes the decarboxylation of isocitrate into α-ketoglutarate in the tricarboxylic acid cycle. It consists of three types of subunits (α, ß, and γ) and exists and functions as the (αßαγ)2 heterooctamer. HsIDH3 is regulated allosterically and/or competitively by numerous metabolites including CIT, ADP, ATP, and NADH. Our previous studies have revealed the molecular basis for the activity and regulation of the αß and αγ heterodimers. However, the molecular mechanism for the allosteric activation of the HsIDH3 holoenzyme remains elusive. In this work, we report the crystal structures of the αß and αγ heterodimers and the (αßαγ)2 heterooctamer containing an α-Q139A mutation in the clasp domain, which renders all the heterodimers and the heterooctamer constitutively active in the absence of activators. Our structural analysis shows that the α-Q139A mutation alters the hydrogen-bonding network at the heterodimer-heterodimer interface in a manner similar to that in the activator-bound αγ heterodimer. This alteration not only stabilizes the active sites of both αQ139Aß and αQ139Aγ heterodimers in active conformations but also induces conformational changes of the pseudo-allosteric site of the αQ139Aß heterodimer enabling it to bind activators. In addition, the αQ139AICT+Ca+NADßNAD structure presents the first pseudo-Michaelis complex of HsIDH3, which allows us to identify the key residues involved in the binding of cofactor, substrate, and metal ion. Our structural and biochemical data together reveal new insights into the molecular mechanisms for allosteric regulation and the catalytic reaction of HsIDH3.


Assuntos
Isocitrato Desidrogenase , Humanos , Regulação Alostérica , Sítio Alostérico , Catálise , Domínio Catalítico , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Cinética , Mutação
5.
Protein Sci ; 30(12): 2396-2407, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34647384

RESUMO

Many isocitrate dehydrogenases (IDHs) are dimeric enzymes whose catalytic sites are located at the intersubunit interface, whereas monomeric IDHs form catalytic sites with single polypeptide chains. It was proposed that monomeric IDHs were evolved from dimeric ones by partial gene duplication and fusion, but the evolutionary process had not been reproduced in laboratory. To construct a chimeric monomeric IDH from homo-dimeric one, it is necessary to reconstitute an active center by a duplicated region; to properly link the duplicated region to the rest part; and to optimize the newly formed protein surface. In this study, a chimeric monomeric IDH was successfully constructed by using homo-dimeric Escherichia coli IDH as a start point by rational design and site-saturation mutagenesis. The ~67 kDa chimeric enzyme behaved as a monomer in solution, with a Km of 61 µM and a kcat of 15 s-1 for isocitrate in the presence of NADP+ and Mn2+ . Our result demonstrated that dimeric IDHs have a potential to evolve monomeric ones. The evolution of the IDH family was also discussed.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Isocitrato Desidrogenase/química , Manganês/química , NADP/química , Subunidades Proteicas/química , Sítios de Ligação , Cátions Bivalentes , Clonagem Molecular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Cinética , Manganês/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , NADP/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
6.
Nat Commun ; 12(1): 5271, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489470

RESUMO

Chimeric antigen receptor (CAR) T cells have emerged as a promising class of therapeutic agents, generating remarkable responses in the clinic for a subset of human cancers. One major challenge precluding the wider implementation of CAR therapy is the paucity of tumor-specific antigens. Here, we describe the development of a CAR targeting the tumor-specific isocitrate dehydrogenase 2 (IDH2) with R140Q mutation presented on the cell surface in complex with a common human leukocyte antigen allele, HLA-B*07:02. Engineering of the hinge domain of the CAR, as well as crystal structure-guided optimization of the IDH2R140Q-HLA-B*07:02-targeting moiety, enhances the sensitivity and specificity of CARs to enable targeting of this HLA-restricted neoantigen. This approach thus holds promise for the development and optimization of immunotherapies specific to other cancer driver mutations that are difficult to target by conventional means.


Assuntos
Antígeno HLA-B7/química , Isocitrato Desidrogenase/metabolismo , Engenharia de Proteínas/métodos , Receptores de Antígenos Quiméricos/química , Animais , Antígenos de Neoplasias/metabolismo , Células COS , Linhagem Celular , Chlorocebus aethiops , Epitopos , Antígeno HLA-B7/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/imunologia , Mutação , Biblioteca de Peptídeos , Conformação Proteica , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/fisiologia
7.
Biochemistry ; 60(25): 1983-1994, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34143606

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is a key metabolic enzyme for maintaining cytosolic levels of α-ketoglutarate (AKG) and preserving the redox environment of the cytosol. Wild-type (WT) IDH1 converts isocitrate to AKG; however, mutant IDH1-R132H that is recurrent in human cancers catalyzes the neomorphic production of the oncometabolite d-2-hydroxyglutrate (D-2HG) from AKG. Recent work suggests that production of l-2-hydroxyglutarte in cancer cells can be regulated by environmental changes, including hypoxia and intracellular pH (pHi). However, it is unknown whether and how pHi affects the activity of IDH1-R132H. Here, we show that in cells IDH1-R132H can produce D-2HG in a pH-dependent manner with increased production at lower pHi. We also identify a molecular mechanism by which this pH sensitivity is achieved. We show that pH-dependent production of D-2HG is mediated by pH-dependent heterodimer formation between IDH1-WT and IDH1-R132H. In contrast, neither IDH1-WT nor IDH1-R132H homodimer formation is affected by pH. Our results demonstrate that robust production of D-2HG by IDH1-R132H relies on the coincidence of (1) the ability to form heterodimers with IDH1-WT and (2) low pHi or highly abundant AKG substrate. These data suggest cancer-associated IDH1-R132H may be sensitive to physiological or microenvironmental cues that lower pH, such as hypoxia or metabolic reprogramming. This work reveals new molecular considerations for targeted therapeutics and suggests potential synergistic effects of using catalytic IDH1 inhibitors targeting D-2HG production in combination with drugs targeting the tumor microenvironment.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/metabolismo , Proteínas Mutantes/metabolismo , Animais , Concentração de Íons de Hidrogênio , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação , Células NIH 3T3 , Multimerização Proteica/efeitos dos fármacos
8.
Arch Biochem Biophys ; 708: 108898, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957092

RESUMO

NAD+-linked isocitrate dehydrogenases (NAD-IDHs) catalyze the oxidative decarboxylation of isocitrate into α-ketoglutarate. Previously, we identified a novel phylogenetic clade including NAD-IDHs from several algae in the type II subfamily, represented by homodimeric NAD-IDH from Ostreococcus tauri (OtIDH). However, due to its lack of a crystalline structure, the molecular mechanisms of the ligand binding and catalysis of OtIDH are little known. Here, we elucidate four high-resolution crystal structures of OtIDH in a ligand-free and various ligand-bound forms that capture at least three states in the catalytic cycle: open, semi-closed, and fully closed. Our results indicate that OtIDH shows several novel interactions with NAD+, unlike type I NAD-IDHs, as well as a strictly conserved substrate binding mode that is similar to other homologs. The central roles of Lys283' in dual coenzyme recognition and Lys234 in catalysis were also revealed. In addition, the crystal structures obtained here also allow us to understand the catalytic mechanism. As expected, structural comparisons reveal that OtIDH has a very high structural similarity to eukaryotic NADP+-linked IDHs (NADP-IDHs) within the type II subfamily rather than with the previously reported NAD-IDHs within the type I subfamily. It has also been demonstrated that OtIDH exhibits substantial conformation changes upon ligand binding, similar to eukaryotic NADP-IDHs. These results unambiguously support our hypothesis that OtIDH and OtIDH-like homologs are possible evolutionary ancestors of eukaryotic NADP-IDHs in type II subfamily.


Assuntos
Clorófitas/enzimologia , Evolução Molecular , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , NADP/metabolismo , NAD/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Coenzimas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Filogenia , Multimerização Proteica , Estrutura Quaternária de Proteína
9.
Artigo em Inglês | MEDLINE | ID: mdl-33832922

RESUMO

Somatic mutations in hotspot regions of the cytosolic or mitochondrial isoforms of the isocitrate dehydrogenase gene (IDH1 and IDH2, respectively) contribute to the pathogenesis of acute myeloid leukemia (AML) by producing the oncometabolite 2-hydroxyglutarate (2-HG). The allosteric IDH1 inhibitor, ivosidenib, suppresses 2-HG production and induces clinical responses in relapsed/refractory IDH1-mutant AML. Herein, we describe a clinical case of AML in which we detected the neomorphic IDH1 p.R132C mutation in consecutive patient samples with a mutational hotspot targeted next-generation sequencing (NGS) assay. The patient had a clinical response to ivosidenib, followed by relapse and disease progression. Subsequent sequencing of the relapsed sample using a newly developed all-exon, hybrid-capture-based NGS panel identified an additional IDH1 p.S280F mutation known to cause renewed 2-HG production and drug resistance. Structural modeling confirmed that serine-to-phenylalanine substitution at this codon sterically hinders ivosidenib from binding to the mutant IDH1 dimer interface and predicted a similar effect on the pan-IDH inhibitor AG-881. Joint full-exon NGS and structural modeling enables monitoring IDH1 inhibitor-treated AML patients for acquired drug resistance and choosing follow-up therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia , Éxons , Isocitrato Desidrogenase/efeitos dos fármacos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Idoso , Sítios de Ligação , Inibidores Enzimáticos/química , Feminino , Predisposição Genética para Doença/genética , Glicina/análogos & derivados , Glicina/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isocitrato Desidrogenase/química , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Mutação , Piridinas , Recidiva
10.
Int J Biol Macromol ; 182: 217-227, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838186

RESUMO

Magnetic nanoparticles (MNPs) were modified by hyaluronic acid (HA). After the process of functionalization, two different strategies have been used to immobilize isocitrate dehydrogenases (IDH) on MNPs. In the first strategy, cross-linked enzyme aggregates were prepared. For this, firstly hyaluronic acid modified magnetic nanoparticles cross-linked enzyme fine aggregates of isocitrate dehydrogenases (IDH/HA/MNPs-CLEAs) were synthesized, and secondly bovine serum albumin (BSA) as co-feeder was used to synthesize the IDH/BSA/HA/MNPs-CLEAs. In the second strategy, the IDH was effectively immobilized on the HA/MNPs surface. The features of MNPs and its derivatives have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and zeta potential measurements. The activity and stability of IDH in IDH/HA/MNPs, IDH/HA/MNPs-CLEAs, and IDH/BSA/HA/MNPs-CLEAs were enhanced. Besides, the enzyme immobilized was readily separated via external magnet from the reaction medium and reused many times. The acquired findings indicate that HA/MNPs are a novel binder/support system to IDH, and IDH immobilized on this system can become a very important biocatalyst working with high accuracy and sensitivity for the determination of magnesium in drinking water and other biological solutions.


Assuntos
Ácido Hialurônico/química , Isocitrato Desidrogenase/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Isocitrato Desidrogenase/metabolismo , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Ann Nucl Med ; 35(4): 493-503, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33532992

RESUMO

OBJECTIVE: Isocitrate dehydrogenase (IDH) mutation, telomerase reverse transcriptase (TERT) promoter mutation and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status are diagnostic, prognostic, predictive and therapeutic biomarkers for primary diffuse gliomas, and this study aimed to explore the relationship between choline (CHO) positron emission tomography (PET) parameters and these molecular alterations. METHODS: Twenty-eight patients who were histopathologically diagnosed with primary diffuse glioma and underwent presurgical CHO PET/CT were retrospectively analyzed, and IDH, TERT and MGMT alterations were examined. The volume of interest (VOI) was semiautomatically defined based on standardized uptake value (SUV) thresholds, and 5 traditional CHO parameters, namely, SUVmax, SUVmean, metabolic tumor volume (MTV), total lesion CHO uptake (TLC) and tumor-to-normal contralateral cortex activity ratio (T/N ratio), were calculated. Wilcoxon rank-sum tests and receiver operating characteristic (ROC) curves were applied to evaluate the differences and performances of the CHO parameters, and their capability to stratify patient prognosis was also evaluated. RESULTS: All 5 parameters were significantly higher in IDH-wildtype gliomas than in IDH-mutant gliomas (p = 0.0001-0.037), and SUVmax, SUVmean, TLC and the T/N ratio exhibited good performances in distinguishing the IDH status (areas under the ROC curve (AUCs) 0.856-0.918, accuracies 0.857-0.893) as well as stratifying patient prognosis. Although the differences and performances of the traditional parameters in distinguishing diverse TERT and MGMT statuses were moderate in the whole population, the T/N ratio and TLC displayed certain predictive value in discriminating the TERT status in the IDH-mutant and IDH-wildtype subgroups (p = 0.028-0.048, AUCs 0.857-0.860, accuracies 0.800-0.917, respectively). CONCLUSIONS: Traditional CHO PET parameters are capable of distinguishing IDH but not TERT or MGMT alterations in the whole population. In accordance with the clinical understanding of TERT promoter mutations, the T/N ratio and TLC can also discriminate the TERT status in IDH subgroups.


Assuntos
Biomarcadores Tumorais/análise , Colina/análise , Metilases de Modificação do DNA/química , Enzimas Reparadoras do DNA/química , Glioma/diagnóstico por imagem , Isocitrato Desidrogenase/química , Telomerase/química , Proteínas Supressoras de Tumor/química , Adulto , Idoso , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Feminino , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Regiões Promotoras Genéticas , Estudos Retrospectivos , Telomerase/genética , Telomerase/metabolismo , Proteínas Supressoras de Tumor/genética
12.
FEBS Open Bio ; 11(3): 921-931, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33455080

RESUMO

Sunitinib (Sun), a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, is the standard first-line treatment against advanced clear cell renal cell carcinoma (RCC), but resistance to therapy is inevitable. Reactive oxygen species production is associated with sensitivity to chemotherapy, but the underlying mechanisms are not completely understood. Here, we investigated the mechanisms contributing to Sun resistance using the RCC cell lines ACHN and 786-O. We report that Sun-resistant cells exhibited reduced apoptosis, increased cell viability, increased reactive oxygen species production and disrupted mitochondrial function. Furthermore, chronic Sun treatment resulted in an up-regulation of Sirt5/isocitrate dehydrogenase 2 (IDH2) expression levels. Knockdown of Sirt5/IDH2 impaired mitochondrial function and partially attenuated Sun resistance. Finally, up-regulation of Sirt5 enhanced the expression of IDH2 via modulation of succinylation at K413 and promoted protein stability. In conclusion, dysregulation of Sirt5/IDH2 partially contributes to Sun resistance in RCC cells by affecting antioxidant capacity.


Assuntos
Carcinoma de Células Renais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Isocitrato Desidrogenase/metabolismo , Neoplasias Renais/metabolismo , Sirtuínas/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Neoplasias Renais/tratamento farmacológico , Estabilidade Proteica , Sunitinibe/farmacologia , Regulação para Cima
13.
Biochimie ; 181: 77-85, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33290880

RESUMO

Acinetobacter baumannii encodes all enzymes required in the tricarboxylic acid (TCA) cycle and glyoxylate bypass except for isocitrate dehydrogenase kinase/phosphatase (IDHKP), which can phosphorylate isocitrate dehydrogenase (IDH) at a substrate-binding Ser site and control the carbon flux in enterobacteria, such as Escherichia coli. The potential kinase was not successfully pulled down from A. baumannii cell lyase; therefore, whether the IDH 1 from A. baumannii (AbIDH1) can be phosphorylated to regulate intracellular carbon flux has not been clarified. Herein, the AbIDH1 gene was cloned, the encoded protein was expressed and purified to homogeneity, and phosphorylation and enzyme kinetics were evaluated in vitro. Gel filtration and SDS-PAGE analyses showed that AbIDH1 is an 83.5 kDa homodimer in solution. The kinetics showed that AbIDH1 is a fully active NADP-dependent enzyme. The Michaelis constant Km is 46.6 (Mn2+) and 18.1 µM (Mg2+) for NADP+ and 50.5 (Mn2+) and 65.4 µM (Mg2+) for the substrate isocitrate. Phosphorylation experiments in vitro indicated that AbIDH1 is a substrate for E. coli IDHKP. The activity of AbIDH1 treated with E. coli IDHKP immediately decreased by 80% within 9 min. Mass spectrometry indicated that the conserved Ser113 of AbIDH1 is phosphorylated. Continuous phosphorylation-mimicking mutants (Ser113Glu and Ser113Asp) lack almost all enzymatic activity. Side-chain mutations at Ser113 (Ser113Thr, Ser113Ala, Ser113Gly and Ser113Tyr) remarkably reduce the enzymatic activity. Understanding the potential of AbIDH1 phosphorylation enables further investigations of the AbIDH1 physiological functions in A. baumannii.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Isocitrato Desidrogenase/química , Acinetobacter baumannii/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fosforilação
14.
Mol Biochem Parasitol ; 240: 111320, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32980452

RESUMO

Leishmania parasites are of great relevance to public health because they are the causative agents of various long-term and health-threatening diseases in humans. Dependent on the manifestation, drugs either require difficult and lengthy administration, are toxic, expensive, not very effective or have lost efficacy due to the resistance developed by these pathogens against clinical treatments. The intermediary metabolism of Leishmania parasites is characterized by several unusual features, among which whether the Krebs cycle operates in a cyclic and/or in a non-cyclic mode is included. Our survey of the genomes of Leishmania species and monoxenous parasites such as those of the genera Crithidia and Leptomonas (http://www.tritrypdb.org) revealed that two genes encoding putative isocitrate dehydrogenases (IDHs) -with distantly related sequences- are strictly conserved among these parasites. Thus, in this study, we aimed to functionally characterize the two leishmanial IDH isoenzymes, for which we selected the genes LmxM10.0290 (Lmex_IDH-90) and LmxM32.2550 (Lmex_IDH-50) from L. mexicana. Phylogenetic analysis showed that Lmex_IDH-50 clustered with members of Subfamily I, which contains mainly archaeal and bacterial IDHs, and that Lmex_IDH-90 was a close relative of eukaryotic enzymes comprised within Subfamily II IDHs. 3-D homology modeling predicted that both IDHs exhibited the typical folding motifs recognized as canonical for prokaryotic and eukaryotic counterparts, respectively. Both IDH isoforms displayed dual subcellular localization, in the cytosol and the mitochondrion. Kinetic studies showed that Lmex_IDH-50 exclusively catalyzed the reduction of NAD+, while Lmex_IDH-90 solely used NADP+ as coenzyme. Besides, Lmex_IDH-50 differed from Lmex_IDH-90 by exhibiting a nearly 20-fold lower apparent Km value towards isocitrate (2.0 µM vs 43 µM). Our findings showed, for the first time, that the genus Leishmania differentiates not only from other trypanosomatids such as Trypanosoma cruzi and Trypanosoma brucei, but also from most living organisms, by exhibiting two functional homo-dimeric IDHs, highly specific towards NAD+ and NADP+, respectively. It is tempting to argue that any or both types of IDHs might be directly or indirectly linked to the Krebs cycle and/or to the de novo synthesis of glutamate. Our results about the biochemical and structural features of leishmanial IDHs show the relevance of deepening our knowledge of the metabolic processes in these pathogenic parasites to potentially identify new therapeutic targets.


Assuntos
Clonagem Molecular , Expressão Gênica , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Leishmania mexicana/enzimologia , Leishmania mexicana/genética , Sequência de Aminoácidos , Ativação Enzimática , Humanos , Isocitrato Desidrogenase/química , Isoenzimas , Cinética , Leishmania mexicana/classificação , Leishmaniose Cutânea/parasitologia , NAD/metabolismo , NADP/metabolismo , Filogenia , Transporte Proteico , Análise de Sequência de DNA , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Biochem Biophys Res Commun ; 532(4): 591-597, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32900482

RESUMO

Mitochondria play a central role in biological oxidation that inevitably generates reactive oxygen species (ROS) as by-products. Maintenance of mitochondrial redox balance status requires NADPH, which is primarily generated by the mitochondrial matrix protein isocitrate dehydrogenase 2 (IDH2). The activity of IDH2 is regulated by post-translational modifications (PTMs). In this study, we found IDH2 is modified by small ubiquitin-like modifier 1 (SUMO1) at lysine 45. SUMO specific protease 1 (SENP1) is responsible for deSUMOylation of IDH2. SUMOylation of IDH2 is induced by oxidants and enhances the antioxidant activity of IDH2 to protect cells against oxidative stress. Mutation of the SUMOylation site impairs the enzymatic activity of IDH2 and hence decreases levels of α-ketoglutarate (α-KG), NADPH and GSH. Cells with SUMOylation deficient IDH2 suffer more apoptosis than that with wild type IDH2 under oxidative stress. These results indicate that SUMOylation is an important way to regulate IDH2 activity to maintain mitochondrial redox balance.


Assuntos
Isocitrato Desidrogenase/metabolismo , Estresse Oxidativo , Sumoilação , Animais , Linhagem Celular , Sobrevivência Celular , Ativação Enzimática , Humanos , Isocitrato Desidrogenase/química , Lisina/metabolismo , Camundongos
16.
Eur Biophys J ; 49(7): 549-559, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32880665

RESUMO

Chiral discrimination in biological systems, such as L-amino acids in proteins and d-sugars in nucleic acids, has been proposed to depend on various mechanisms, and chiral discrimination by mutated enzymes mediating cancer cell signaling is important in current research. We have explored how mutated isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate which in turn is converted to d-2-hydroxyglutatrate (d-2HG) as a preferred product instead of l-2-hydroxyglutatrate (l-2HG) according to quantum chemical calculations. Using transition state structure modeling, we delineate the preferred product formation of d-2HG over l-2HG in an IDH active site model. The mechanisms for the formation of d-2HG over l-2HG are assessed by identifying transition state structures and activation energy barriers in gas and solution phases. The calculated reaction energy profile for the formation of d-2HG and l-2HG metabolites shows a 29 times higher value for l-2HG as compared to d-2HG. Results for second-order Møller-Plesset perturbation theory (MP2) do not alter the observed trend based on Density Functional Theory (DFT). The observed trends in reaction energy profile explain why the formation of D-2HG is preferred over l-2HG and reveal why mutation leads to the formation of d-2HG instead of l-2HG. For a better understanding of the observed difference in the activation barrier for the formation of the two alternative products, we performed natural bond orbital analysis, non-covalent interactions analysis and energy decomposition analysis. Our findings based on computational calculations clearly indicate a role for chiral discrimination in mutated enzymatic pathways in cancer biology.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/enzimologia , Domínio Catalítico , Glioma/enzimologia , Glutaratos/química , Humanos , Isocitrato Desidrogenase/química , Ácidos Cetoglutáricos/química , Conformação Molecular , Mutação , Neoplasias/genética , Estereoisomerismo , Termodinâmica
17.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824636

RESUMO

The marine diatom Phaeodactylum tricornutum originated from a series of secondary symbiotic events and has been used as a model organism for studying diatom biology. A novel type II homodimeric isocitrate dehydrogenase from P. tricornutum (PtIDH1) was expressed, purified, and identified in detail through enzymatic characterization. Kinetic analysis showed that PtIDH1 is NAD+-dependent and has no detectable activity with NADP+. The catalytic efficiency of PtIDH1 for NAD+ is 0.16 µM-1·s-1 and 0.09 µM-1·s-1 in the presence of Mn2+ and Mg2+, respectively. Unlike other bacterial homodimeric NAD-IDHs, PtIDH1 activity was allosterically regulated by the isocitrate. Furthermore, the dimeric structure of PtIDH1 was determined at 2.8 Å resolution, and each subunit was resolved into four domains, similar to the eukaryotic homodimeric NADP-IDH in the type II subfamily. Interestingly, a unique and novel C-terminal EF-hand domain was first defined in PtIDH1. Deletion of this domain disrupted the intact dimeric structure and activity. Mutation of the four Ca2+-binding sites in the EF-hand significantly reduced the calcium tolerance of PtIDH1. Thus, we suggest that the EF-hand domain could be involved in the dimerization and Ca2+-coordination of PtIDH1. The current report, on the first structure of type II eukaryotic NAD-IDH, provides new information for further investigation of the evolution of the IDH family.


Assuntos
Diatomáceas/enzimologia , Isocitrato Desidrogenase/química , Regulação Alostérica , Sítio Alostérico , Cristalografia por Raios X , Motivos EF Hand , Isocitrato Desidrogenase/metabolismo , Isocitratos/química , Isocitratos/metabolismo , NAD/química , NAD/metabolismo
18.
Eur J Med Chem ; 203: 112491, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32679449

RESUMO

The enzymes involved in the metabolic pathways in cancer cells have been demonstrated as important therapeutic targets such as the isocitrate dehydrogenase 2 (IDH2). A series of macrocyclic derivatives was designed based on the marketed IDH2 inhibitor AG-221 by using the conformational restriction strategy. The resulted compounds showed moderate to good inhibitory potential against different IDH2-mutant enzymes. Amongst, compound C6 exhibited better IDH2R140Q inhibitory potency than AG-221, and showed excellent activity of 2-hydroxyglutarate (2-HG) suppression in vitro and its mesylate displayed good pharmacokinetic profiles. Moreover, C6 performed strong binding mode to IDH2R140Q after computational docking and dynamic simulation, which may serve as a good starting point for further development.


Assuntos
Desenho de Fármacos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/patologia , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Mutação , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Técnicas de Química Sintética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica
19.
Biochem J ; 477(16): 2999-3018, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32729927

RESUMO

Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Mutação , Catálise , Domínio Catalítico , Glutaratos/química , Humanos , Concentração de Íons de Hidrogênio , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitratos/química , Cinética , Conformação Proteica , Especificidade por Substrato
20.
Comput Biol Chem ; 86: 107261, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32361585

RESUMO

Mutant isocitrate dehydrogenase 2 (mIDH2) is an emerging target for the treatment of cancer. AG-221 is the first mIDH2 inhibitor approved by the FDA for acute myeloid leukemia treatment, but its acquired resistance has recently been observed, necessitating the development of new inhibitor. In this study, a multi-step virtual screening protocol was employed for the analysis of a large database of compounds to identify potential mIDH2 inhibitors. To this end, we firstly utilized molecular dynamics (MD) simulations and binding free energy calculations to elucidate the key factors affecting ligand binding and drug resistance. Based on these findings, the receptor-ligand interaction-based pharmacophore (IBP) model and hierarchical docking-based virtual screening were sequentially carried out to assess 212,736 compounds from the Specs database. The resulting hits were finally ranked by PAINS filter and ADME prediction and the top compounds were obtained. Among them, six molecules were identified as mIDH2 putative inhibitors with high selectivity by interacting with the capping residue Asp312. Furthermore, subsequent docking and MD experiments demonstrated that compound V2 might have potential inhibitory activity against the AG-221-resistant mutants, thereby making it a promising lead for the development of novel mIDH2 inhibitors.


Assuntos
Inibidores Enzimáticos/química , Isocitrato Desidrogenase/antagonistas & inibidores , Animais , Permeabilidade da Membrana Celular , Cães , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Humanos , Absorção Intestinal , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Ligantes , Células Madin Darby de Rim Canino , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...